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Prune supplementation for 12 months alters the
gut microbiome in postmenopausal women†‡
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Prunes have health benefits, particularly in postmenopausal women. It is likely that the gut microbiome

mediates some of these effects, but its exact role remains to be elucidated. This study aims to characterize

the effect of prune supplementation on the gut microbiome of postmenopausal women. The fecal

microbiome of 143 postmenopausal women ages 55–75 who met the compliance criteria in a random-

ized controlled trial of a 12-month dietary intervention in one of three treatment groups – no prunes (n =

52), 50 g prunes per day (n = 54), or 100 g prunes per day (n = 37) – was characterized at baseline and at

the 12-month endpoint using 16S rRNA gene sequencing and QIIME2. Additional outcomes included

assessment of select urinary phenolic metabolites and inflammatory markers. After 12 months, micro-

biomes of women consuming 50 g prunes had decreased evenness in bacteria taxa (Pielou’s Evenness,

Kruskal–Wallis p = 0.026). Beta diversity comparisons indicated significant differences in microbiomes

among prune treatments (Bray–Curtis PERMANOVA, p = 0.005), and the effect was different at each

prune dose (p = 0.057). Prunes enriched some bacterial taxa such as the family Lachnospiraceae (LEfSe

LDA = 4.5). Some taxa correlated with urinary phenolic metabolites and inflammatory markers. Blautia

negatively correlated with total urinary phenolics (r = −0.25, p = 0.035) and Lachnospiraceae UCG-001

negatively correlated with plasma concentrations of IL-1β (r = −0.29, p = 0.002). Differing gut micro-

biomes and correlation of some taxa with select phenolic metabolites and inflammatory markers, particu-

larly Lachnospiraceae, after prune consumption suggest a potential mechanism mediating health effects.

The microbiome differences at each dose may have implications for the use of prunes as a non-pharma-

cological whole food intervention for gut health.

1. Introduction

Prunes confer health benefits including increased gastric
motility,1,2 improved cardiovascular health,3 and bone loss
prevention in postmenopausal women.4,5 The gut microbiome
may mediate health effects of prunes by influencing nutrient
uptake and prune metabolites in the lower gut.6 Further, the
gut microbiome can influence the host immune system
through direct immune stimulation, modulation of gut wall

permeability, and production of immunomodulatory metab-
olites.7 Gut microbiome-mediated immune responses are
implicated in the development of diabetes, cardiovascular
disease, inflammatory bowel disease, cancer,7 and postmeno-
pausal osteoporosis.8,9 Immune disfunction is a hallmark of
aging,10 and increases disease risk in postmenopausal
women. Thus, the interaction between prunes, the gut micro-
biome, immunologically active metabolites, and host inflam-
matory markers in postmenopausal women merits
investigation.

Prune phenolics are of particular interest because of their
potential to modulate antioxidant and anti-inflammatory
responses.5,11 Prune phenolics are primarily composed of
caffeoylquinic acids, otherwise known as chlorogenic acids.1

While abundant in the fruit, chlorogenic acids are poorly
absorbed in the upper intestine and become available to the
gut microbiota in the lower intestine. The gut microbiota
metabolize these compounds12 to a diverse array of low mole-
cular weight phenolic metabolites.11,12 These microbial pheno-
lic metabolites are more bioavailable to the host13 and are
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believed to reduce the host inflammatory response14 and
inhibit development of inflammatory diseases.

Prunes may exert unique effects on the gut microbiome due
to their nutrient composition and effects on gastric motility.
In addition to phenolics, prunes are rich in fiber, simple
sugars, and micronutrients.1 Fiber has been shown to impact
the human microbiome (reviewed in ref. 15). Animal studies
suggest that simple sugars16,17 and various micronutrients
including vitamins and free elements (reviewed in ref. 18) can
influence the microbiome. Other fruits have previously been
shown to influence gut microbiome composition, but these
effects are dependent on the fruit’s nutrient composition.20

Thus, these compositional differences in prunes may exert a
different effect than other fruits on the composition of the
microbiome.

Taken together, the unique nutrient composition, phenolic
content, effects on the gastrointestinal tract, and empirical
health benefits of prunes warrant further investigation into
prunes’ effect on the gut microbiome. To date, there have been
no long-term and only two short-term studies that have investi-
gated the effect of acute prune consumption on the micro-
biome in humans.2,19 In men and women age 18–53 years,
consumption of prune juice for four weeks increased the
colony count of beneficial bacterial populations, particularly
Bifidobacterium and Lactobacillus spp., while lowering the
colony count of potentially harmful bacteria, including
Escherichia coli and Clostridium perfringens, suggesting that
prunes may positively modulate the gut microbiome.19 In
another study in men and women age 18–65 years, consuming
80 g and 120 g of whole prunes per day for four weeks
increased bifidobacteria.2 These studies have a number of
caveats that may limit their applicability to postmenopausal
women, including: (1) younger, mixed-gender cohorts, who
may respond differently to prunes than postmenopausal
women; (2) the use of culture-dependent methods, which are
only capable of measuring a fraction of microbial diversity;21

and (3) the short-term intervention length. The health effects
of prunes in postmenopausal women are observed on the
scale of months to years,4 and the effects of dietary interven-
tions on the gut microbiome may differ in the long-term. It is
therefore necessary to investigate the effect of long-term prune
consumption on the gut microbiome.

The purpose of this study was to characterize the effect of
12-months of prune consumption on the gut microbiome,
prune phenolic metabolism, and inflammatory markers in
postmenopausal women. We hypothesized that 12 months of
prune consumption would change the gut microbiome of post-
menopausal women, altering excreted phenolic metabolites
and host inflammatory markers. Specifically, we aimed to (1)
determine the changes in gut microbiome composition of
postmenopausal women after a 12-month prune intervention,
(2) quantify if microbiome differences vary with prune dose,
and (3) identify correlations between the gut microbiome,
select phenolic metabolites, and host inflammatory markers.
To address these aims, postmenopausal women were assigned
to 50 g prune per day, 100 g prune per day, or a no prune

control in a 12-month, parallel arm, randomized controlled
trial (RCT). The fecal microbiome was analyzed pre- and post-
prune intervention using 16S rRNA gene amplicon sequencing.
Additional measures collected pre- and post-intervention
included select urinary phenolic metabolites and host inflam-
matory markers.

2. Materials and methods
2.1. Study design

2.2.1. Study overview. The Prune Study (Clinical Trials
NCT02822378) is a parallel arm randomized controlled trial to
study the effects of a 12-month prune intervention on bone
health (bone outcomes published elsewhere4) and the gut
microbiome of postmenopausal women. A detailed description
of the design of this study has been published.22 Briefly, post-
menopausal women aged 55–75 years were enrolled at
Pennsylvania State University (PSU) and randomized into one
of three treatments: 50 g prunes (i.e., 4–6 prunes), 100 g
prunes (10–12 prunes), or a no prune control group. Prunes
were consumed daily for 12 months in the two treatment
groups. Two hundred thirty-five women enrolled (78 control,
79 50 g, 78 100 g) and 183 women completed the 12-month
intervention (70 control, 67 50 g, 46 100 g). Fecal microbiome
analysis was conducted on 155 of these women (58 control, 58
50 g, 39 100 g), due to missing or insufficient fecal sample
amounts collected from some subjects. Of these, 143 women
(52 control, 54 50 g, 37 100 g) were compliant with the treat-
ment (see section Compliance), and this was the subset of sub-
jects analyzed to determine the effect of prune treatment on
the microbiome. A CONSORT diagram is available in Fig. S1.‡
Measured outcomes used in this study are the fecal micro-
biome, select phenolic metabolites, and inflammatory
markers.

2.2.2. Recruitment, screening & eligibility. All study pro-
cedures were performed at the Pennsylvania State University
Clinical Research Center from June 2016 to February 2021.
Informed consent was obtained during an in-person visit.
Eligible participants were postmenopausal women aged 55–75
years, not severely obese (BMI < 40 kg m−2), healthy (as deter-
mined by screening questionnaire and metabolic panel), non-
smoking, ambulatory, and had a bone mineral density T-score
at the lumbar spine, total hip, and/or femoral neck between
0.0 and −3.0. Exclusion criteria included consumption of any
natural dietary supplement containing phenolics, consump-
tion of >1 cup per day of blueberries or apples for at least
2 months prior to study entry, a history of bone fractures after
age 50, significant chronic disease, and consumption of
certain medicines affecting bone metabolism, as described
previously.22

2.2.3. Prune intervention. Participants were randomly
assigned to one of three treatment groups: a no prune control
group, 50 g prunes per day (e.g., 4–6 prunes), and 100 g prunes
per day (10–12 prunes) for 12 months. Prunes were supplied
by the California Prune Board. Prune phenolic composition,
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determined as previously described,23 varied little between
years. The main phenolic constituents were chlorogenic acid
derivatives (Table S1‡). Prune groups underwent a “run-in”
period to slowly increase prune consumption in their diet, as
previously described.22 All participants were supplemented as
necessary to meet the required intake of 1200 mg calcium and
800 IU vitamin D3 daily (Nature Made Pharmavite LLC, West
Hills, CA). This supplementation was related to the primary
outcome of the trial, bone health. Due to the nature of the
intervention, it was not possible to blind participants and
study staff to the treatment, but data analysts and outcome
assessors were blinded.

2.2.4. Compliance. Compliance was determined from self-
report logs of prune and/or calcium and vitamin D3 consump-
tion logs, completed each day. Compliance was calculated as
the reported consumed prunes or supplements divided by the
prescribed amounts of prunes or supplements (%).
“Compliant” participants were those who consumed >80% of
prescribed prunes (for the 50 g and 100 g prune groups) or
>80% of prescribed supplements (for the control group)
during the entirety of the 12-month intervention.

2.3. Anthropometrics

Height was measured in centimeters using a stadiometer.
Total body weight was measured on a physician’s scale (Seca,
Model 770, Hamburg, Germany) during screening and each
monthly visit. BMI was calculated as body mass divided by
height squared (kg m−2).

2.4. Diet assessment

To assess kilocalorie intake and dietary composition, participants
measured and recorded all food and beverages consumed in a
3-day window encompassing two weekdays and one weekend day.
Diet diary data were coded and analyzed using Nutritionist Pro
software (Axxya Systems, Redmond, WA). Daily nutrient intake
was averaged over the 3-day recording window.

2.5. Phenolics

Phenolic metabolites were measured from a 48-hour pooled
urine sample every three months. To minimize background
from non-prune phenolics, participants were asked not to
consume phenolic-rich foods such as coffee, fruits, and veg-
etables for 12 hours before urine collection. All phenolic ana-
lyses were conducted at the North Caroline State University
Plants for Human Health Institute (Kannapolis, NC). Upon
arrival 1 mL of the pooled 48-hour urine sample was stored at
−80 °C. Urinary samples were analyzed to determine total phe-
nolics and targeted phenolic metabolites as previously
described in detail.22 Briefly, total urinary phenolics were
determined from a 48-hour pooled urine sample after solid
phase extraction (SPE) extraction by the Folin–Ciocalteu micro-
plate method24 and corrected for creatinine content (colori-
metric assay kit 500701, Cayman chemical, Ann Arbor, MI).25 A
targeted set of 21 prune-derived phenolic metabolites were
measured by ultra-performance liquid chromatography-
tandem mass spectrometer (UPLC-MS/MS) using a Waters

UPLC Acquity H Class system equipped with a Xevo TQD Mass
Spectrometric detector as described previously.22

2.6. Inflammation assessment

Inflammatory markers were measured at baseline and post-
intervention. Detailed methods have been published.22

C-reactive protein (CRP) in serum was quantified in duplicate
using an Immulite (Siemens Healthcare, Munich, Germany)
high-sensitivity CRP kit as per manufacturer’s instructions.
Peripheral blood mononuclear cells (PBMCs) were isolated as
previously described22 and counted for use in functional and
phenotypic analyses as previously described.26

2.6.1. In vitro inflammatory cytokine secretion assay.
PBMCs (2 × 105 mL−1) were stimulated with 0.625 μg mL−1

lipopolysaccharide (LPS) (Sigma-Aldrich, St Louis, MO)27 in
round-bottomed 96-well plates, and supernatants (70 μL per
replicate) were harvested after 4 h incubation at 37 °C and
frozen at −80 °C until analysis. Cytokines and chemokines
(IL-1β, IL-6, IL-8, TNF-α, and MCP-1) in plasma and super-
natants harvested from LPS-stimulated PBMCs were measured
using the V-PLEX Proinflammatory Panel 1 Human Kit and
V-PLEX Human MCP-1 kit (Meso Scale Diagnostics, LLC,
Rockville, MD) as per the manufacturer’s instructions.
Supernatants were diluted 1 : 5 for MCP-1 measurement and
1 : 20 for IL-1β, IL-6, IL-8, TNF-α measurements in dilution
buffer. Each assay was performed in duplicate.

2.6.2. Flow cytometric analysis. PBMCs were washed twice
in PBS at 4 °C. Fc receptors on PBMCs were blocked by incu-
bation with Fc block (Human TruStain FcX, Biolegend, San
Diego, CA) at 5 µL per 1 × 106 cells at 25 °C for 5 minutes.
PBMCs were stained with fluorescence-labeled mouse anti-
human antibodies (1 μg per 1 × 106 cells) to the following cell
surface markers: CD3, CD14, CD282 (TLR-2) and Human
Leukocyte Antigen-DR isotype (HLA-DR). Antibody isotype con-
trols included: mouse IgG2a and mouse IgM. CD282 and
CD14 were purchased from Biolegend, and all remaining anti-
bodies were purchased from BD Biosciences (Franklin Lakes,
NJ). Following incubation with the conjugated antibodies for
30 minutes at 4 °C, cells were washed twice in PBS and then
fixed in cytofix (BD Biosciences) for flow cytometric analyses
as previously described.28 A total of 50 000 events were
acquired with BD LSR-Fortessa (BD Biosciences). Data were
analyzed and plotted using FlowJo software v10 (FlowJo, LLC).
Live lymphoid and myeloid cells were gated on forward versus
side scatter. The percent of live cells that were CD14+ and
HLA-DR+ was quantified to measure the percentage of CD14+/
HLA-DR+ monocytes within the live cell population. The
median fluorescent intensities (MFI) of HLA-DR and CD282
expression on triple-positive CD14+/HLA-DR+/CD282+ cells
were calculated to assess monocyte activation.

2.7. Fecal microbiome analysis

2.7.1. DNA extraction & quantification. Homogenized fecal
samples were stored at −80 °C until DNA extraction. DNA was
extracted using the FastDNA SPIN Kit for Soil (MP
Biomedicals) and bead-beating according to the manufac-
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turer’s instructions. Extracted DNA quality was assessed using
0.8% agarose gel electrophoresis and a NanoDrop One spectro-
meter (Thermo Scientific). DNA was quantified using a
NanoDrop 3300 spectrofluorometer (Thermo Scientific).

2.7.2. Amplification of 16S rRNA gene. The V3–V4 region
of the 16S rRNA gene was amplified by PCR with primers
343F: TAC GGR AGG CAG CAG and 804R: CTA CCR GGG TAT
CTA ATC C. PCR was conducted using the Q5 High-Fidelity
Master Mix (New England Biolabs), with 10 ng of DNA tem-
plate per 50 μl reaction, and the following cycling conditions:
5 minutes at 95 °C; 15 cycles of 30 seconds at 94 °C, 20
seconds at 58 °C, and 20 seconds at 72 °C; 10 minutes at
72 °C. PCR products were purified using the Axy-Prep Mag
PCR clean-up kit (Axygen®, Corning) and subjected to a
second PCR phase, in which amplicons were barcoded using
forward and reverse 8-base pair primer tags. The second PCR
phase used the following cycling conditions: 5 minutes at
95 °C; 5 cycles of 30 seconds at 94 °C, 20 seconds at 64 °C, and
20 seconds at 72 °C; 10 minutes at 72 °C. PCR products were
again purified using the Axy-Prep Mag PCR clean-up kit and
quantified using the QuantiFluor dsDNA System (Promega)
and a NanoDrop 3300 spectrofluorometer. Purified PCR pro-
ducts were then pooled in equal molar concentrations and 2 ×
250 paired end sequencing was performed using an Illumina
MiSeq instrument at the Purdue Genomics Facility.

2.7.3. Sequence analysis. Sequences were trimmed to
remove adapters and barcodes, and then analyzed using
QIIME2.29 After demultiplexing, DADA230 was used to trim
bases for quality, merge paired-end reads and group sequences
into amplicon sequence variants (ASVs). A taxonomy classifier,
trained using the SILVA database (version 138),31 was used to
assign taxonomies to representative 16S rRNA gene sequences.
Sequences were then filtered to remove chloroplast and mito-
chondrial sequences, sequences unidentified at the phylum
level, and features present in less than 10 samples. For all
diversity analyses, sequences were rarified to the same depth,
chosen to maximize retained features while minimizing
excluded samples. Differences in alpha and beta diversity were
tested among the treatment groups pre- and post-intervention
(control vs. 50 g vs. 100 g). Alpha diversity (metrics used:
observed features, Pielou’s evenness, Faith’s phylogenetic diver-
sity32) and beta diversity (metrics used: Jaccard, Bray–Curtis,
unweighted Unifrac,33 and weighted Unifrac) were analyzed
using QIIME2. Alpha diversity measures the richness and/or
evenness of taxa within a sample, while beta diversity measures
the difference in taxa distribution among samples. Beta diver-
sity was visualized using Principal Coordinates Analysis (PCoA)
plots in R using the package ape (v5.4-1). For all four beta diver-
sity metrics, beta diversity dissimilarity within each treatment
group was calculated using pairwise comparisons of micro-
biomes within each treatment group using QIIME2. Analysis of
Composition of Microbes (ANCOM)34 was used to find differ-
ences in the log-transformed counts of taxa between treatment
groups, and linear discriminant analysis (LDA) effect size
(LEfSe)35 was used to find differences in the relative abundance
of taxa among treatment groups.

2.8. Statistical testing

Significant differences in alpha-diversity were tested using
Kruskal–Wallis and post hoc pairwise testing was conducted
using FDR-corrected Kruskal–Wallis. Significant differences in
beta diversity were determined using permutational multi-
variate analysis of variance (PERMANOVA) with 999 permu-
tations. Post hoc pairwise testing for beta diversity was also
tested using FDR-corrected PERMANOVA with 999 permu-
tations. Permutational analysis of multivariate dispersions
(PERMDISP) was used to calculate whether significant differ-
ences in beta diversity could be due to differences in the vari-
ation of treatment groups instead of true differences in group
means. For quantitative human health variables, normality
was tested using Shapiro-Wilk’s method. Inflammatory
markers were cleaned for outliers and normalized using log- or
square root-transformations, as necessary. Unless otherwise
noted, all significance testing among groups was done using
ANOVA and subsequent pairwise testing by Tukey’s HSD.
Correspondence between bacterial genera, prune treatment
and phenolic metabolites at week 52 was determined using
Canonical Correspondence Analysis (CCA). Linear correlations
between the log-count of individual taxa at species-level and
host variables were determined using Spearman’s rank corre-
lation coefficient in R with the package corrplot. Multiple
linear regression to associate excreted phenolics with log
counts of microbial genera was conducted in R. The genera
selected for this analysis were the eight most explanatory taxa
for each phenolic metabolite as determined using the eleaps
function in the R package subselect. For all analyses, P- or
q-values less than 0.05 were considered significant, and those
less than 0.10 were considered a trend.

3. Results
3.1. Demographics

The gut microbiome can be influenced by many demographic
variables.36,37 Demographics for all 235 enrolled participants
are published elsewhere;4 trends presented here for the 143
compliant subjects (consumed >80% of assigned prune treat-
ment or vitamin D3/Ca supplements) are similar. The average
age was 62.3 years (range: 55–75) at baseline and 99% (n = 141)
were Caucasian. Participants were mostly healthy or overweight
(72 healthy, 49 overweight, 22 obese) with an average BMI of
25.6 kg m−2 (range: 18.6–39.2; Table 1). Notably, participants
in the 50 g prune group had a significantly higher BMI than
participants in the other groups. Data for all 155 participants
whose microbiomes were sequenced, including non-compliant
participants, are available in the ESI.‡ In short, the micro-
biome results for 155 subjects were similar to those presented
for compliant participant samples only.

3.2. 16S rRNA gene sequencing results

In total, 310 fecal samples representing baseline and post-
intervention samples from 155 subjects (58 control, 58 50 g, 39
100 g) were sequenced of which the results for the 143 compli-

Paper Food & Function

Food Funct. This journal is © The Royal Society of Chemistry 2022

Pu
bl

is
he

d 
on

 0
7 

N
ov

em
be

r 
20

22
. D

ow
nl

oa
de

d 
by

 P
en

ns
yl

va
ni

a 
St

at
e 

U
ni

ve
rs

ity
 o

n 
11

/9
/2

02
2 

3:
10

:1
5 

PM
. 

View Article Online

https://doi.org/10.1039/d2fo02273g


ant subjects are presented here. After processing of MiSeq
Illumina sequencing results by DADA2 and filtering, a total of
15 892 968 reads were retained, with a median of 41 914 reads
(range: 11 940–308 076) per sample. Most diversity measures
require the same number of reads to compare samples. To
ensure sufficient sequence coverage (Fig. S2‡) while maximiz-
ing retained samples, a sampling depth of 11 940 reads was
chosen for all diversity analyses. This depth retained all
samples and 3 701 400 (23.29%) reads.

3.3. Alpha diversity

Alpha diversity, a measure of gut microbial species richness
(the number of taxa) and evenness (the even distribution of
taxa) within each sample, was analyzed among the treatment
groups (143 total: 52 control, 54 50 g, 37 100 g).

3.3.1. Baseline alpha diversity. To determine whether the
treatment groups had similar microbiomes prior to prune
intervention, baseline differences in the among the treatment
groups were analyzed. Significant differences in alpha diversity
metrics among the randomized treatment groups at baseline
were found using the metrics Observed features (considers
richness only; Fig. 1A), Shannon diversity (considers richness
and evenness; data not shown), and FaithPD (phylogenetic
diversity; data not shown) metrics (p < 0.03), but not Pielou’s
evenness (considers evenness only; p = 0.177; Fig. 1B). This
indicates that differences in diversity within treatments at
baseline were likely driven by richness rather than evenness.
Specifically, at baseline, the group randomized to the 50 g
prune treatment had lower Observed features (q = 0.013),
Shannon diversity (q = 0.03) and FaithPD (q = 0.009) than the
group randomized to the 100 g prune treatment. These results
indicate that the participants randomized to the 50 g prune

group had lower richness prior to intervention. Importantly,
there were no significant differences between the participants
randomized to the no prune control and the two prune treat-
ment groups.

3.3.2. Post-prune treatment & alpha diversity. At the
12-month endpoint, alpha diversity analyses indicated no sig-
nificant differences in observed features (p = 0.40; Fig. 1C) or
FaithPD (p = 0.29; data not shown). However, there were sig-
nificant differences in Pielou’s evenness (p = 0.026; Fig. 1D)
and Shannon (p = 0.044; data not shown) among treatments.
The 50 g prune group had a slightly lower alpha diversity than
the control and 100 g prune groups (Pielou’s evenness, signifi-
cant, q < 0.045; Shannon, trend, q < 0.052). These differences
indicate that the 50 g prune group had a more uneven taxa dis-
tribution after 12 months that was not seen at baseline. This
effect was not observed in the 100 g prune group.

3.4. Beta diversity

Beta diversity, a comparison of diversity among samples, was
analyzed to identify microbiome differences among the treat-
ment groups.

3.4.1. Baseline beta diversity. At baseline there was a sig-
nificant difference among treatment groups using the
unweighted Unifrac metric (compares phylogeny; p = 0.012), but
not using Bray–Curtis (compares taxa relative abundances;
Fig. 2A), Jaccard (compares presence/absence of taxa; data not
shown), or weighted Unifrac (compares taxa phylogeny and rela-
tive abundance; data not shown). The difference at baseline was
probably due to the differing phylogenetic structure of the group
randomized to the 50 g prune treatment (unweighted Unifrac,
pairwise q < 0.05) prior to the prune intervention.

3.4.2. Post-prune treatment & beta diversity. After a
12 month prune intervention statistical differences in the
microbiomes of control, 50 g prune, and 100 g prune groups
were observed using all four beta diversity metrics tested
(Bray–Curtis, Jaccard, weighted Unifrac, significant, p < 0.04;
unweighted Unifrac, trend, p = 0.06). The PCoA plot of the
Bray–Curtis metric (representative of all the metrics) indicates
there is overlap of microbiomes among treatments but the cen-
troids (diamonds in Fig. 2B) illustrate the differences.
PERMDISP was not significant for any metric (p > 0.189), indi-
cating that these differences are due to true differences in the
means of groups and not due to dispersion differences. Only
Bray–Curtis, which considers taxa abundance, and weighted
Unifrac, which considers taxa phylogeny as well as abundance,
detected pairwise differences between interventions. Bray–
Curtis detected significant differences between control and the
50 g prune groups (q = 0.037), as well as between control and
the 100 g prune groups (q = 0.037). The difference between
50 g and 100 g prunes was a trend (q = 0.057). For weighted
Unifrac, all three comparisons trended significant (q = 0.076).
These results indicate that differences in the community due
to prunes are caused by differing abundances of taxa, rather
than a substantially different set of taxa among the groups.
The difference observed between 50 g and 100 g prune groups
indicate that the two prune doses exert different effects on the

Table 1 Demographics of compliant participants whose fecal micro-
biomes were sequenced

Control
50 g
prune

100 g
prune p

N 52 54 37
Age (years) 62.3 ± 4.7 63.4 ± 4.7 62.3 ± 5.3 0.960
Years since
menopause

11.9 ± 6.9 11.8 ± 6.6 12.2 ± 7.6 0.961

BMI (kg m−2) 24.4 ± 3.4 26.7 ± 4.9 25.7 ± 3.0 0.025a

Normal 32 (62%) 24 (44%) 16 (43%)
Overweight 15 (29%) 17 (31%) 17 (46%)
Obese 5 (10%) 12 (24%) 4 (11%)

Race
Caucasian 52 (100%) 52 (96%) 37 (100%)
Asian 0 (0%) 2 (4%) 0 (0%)

Daily dietary fiber at
baseline (g)

20.6 ± 7.2 21.7 ± 11.2 24.3 ± 15.3 0.828

Daily dietary fiber
at week 52 (g)

23.2 ± 8.3 21.8 ± 8.6 26.7 ± 14.1 0.375

Estimated daily fiber
from prunes (g)

0 3.94 7.89

Data are mean ± standard deviation. Significant differences among
groups at baseline determined using Kruskal–Wallis. a Control and
50 g Prune group differed using pairwise Wilcoxon ranked sum test
(p = 0.039).

Food & Function Paper

This journal is © The Royal Society of Chemistry 2022 Food Funct.

Pu
bl

is
he

d 
on

 0
7 

N
ov

em
be

r 
20

22
. D

ow
nl

oa
de

d 
by

 P
en

ns
yl

va
ni

a 
St

at
e 

U
ni

ve
rs

ity
 o

n 
11

/9
/2

02
2 

3:
10

:1
5 

PM
. 

View Article Online

https://doi.org/10.1039/d2fo02273g


gut microbiome. To better illustrate the decrease in beta diver-
sity dissimilarity after prune consumption, the averages of
pairwise comparisons within groups were calculated and violin
plots were used to show that microbiomes became more
similar after consuming prunes within the 50 and 100 g prune
groups (all four beta diversity metrics, ANOVA p < 9 × 10–9,
Tukey HSD p < 0.002; Fig. 2C example using Bray Curtis).
Pairwise comparisons indicated significant differences at
12-months for control vs. 50 g and control vs. 100 g prune (p <
1 × 10–7), but not for 50 vs. 100 g prunes (p = 0.23).

3.4.3. Post prune treatment & differential taxa. LEfSe
identified taxa that differed between control, 50 g prune, and
100 g prune groups at 12-months. LEfSe identified 75 taxa as
differentially abundant at LDA > 2 (Table S2‡). Those with

LDA > 3 are depicted in Fig. 3A. The most differentially abun-
dant taxon as determined by LEfSe (Fig. 3B) was the family
Lachnospiraceae (LDA = 4.5), which was most abundant in the
50 g prune group. Other highly differentially abundant taxa
include the genus Blautia (LDA = 4.3, most abundant in 50 g
prune group; Fig. 3C), the order Oscillospirales (LDA = 4.3,
least abundant in the 50 g prune group; Fig. 3D), and the
genus Anaerostipes (LDA = 4.2, increases with prune dose;
Fig. 3E). There were no significantly different taxa identified by
ANCOM (data not shown).

3.5. Phenolics

Post-prune intervention, comparisons of excreted urinary phe-
nolic metabolite concentrations indicated no differences in

Fig. 1 Boxplots represent the medians and upper and lower quartile values of within sample (alpha) diversity metrics before (A and B) and after (C
and D) prune consumption. (A and C) Observed Features, (B and D) Pielou’s Evenness. Dots represent outliers. Overall Kruskal–Wallis p-values are
presented and if pairwise FDR-corrected Kruskal–Wallis significance (p < 0.05) was found it is denoted with different letters above boxes (n = 52
control, 54 50 g prune, 37 100 g prune).
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total urinary phenolics (measured by Folin–Ciocalteu and cor-
rected for creatinine) between groups, but some differences
were observed in individual metabolites. The targeted phenolic
metabolite method used in this study measured 21 specific
phenolic metabolites including individual flavonoids, hydroxy-
cinnamic acids, hydroxybenzoic acids and hippuric acids.
Metabolites of interest 4-hydroxybenzoic acid, 3-hydroxyhippu-
ric acid, and hippuric acid were identified because they
differed in the first 12 weeks of the intervention (data not
shown). It should be noted that sample size is different for
each metabolite due to some samples being below the detec-
tion limit (4-hydroxybenzoic acid n = 52, 3-hydroxyhippuric
acid n = 78, hippuric acid n = 110, total phenolics n = 142).
Post-intervention, hippuric acid was differentially excreted in
urine (Kruskal–Wallis, p = 0.0002). Hippuric acid was signifi-
cantly increased in the 50 g and 100 g prune groups compared
to control (Fig. 4; pairwise Wilcoxon p < 0.01). In addition,
4-hydroxbenzoic acid trended lower with increasing prune

dose (p = 0.09), and 3-hydroxyhippuric acid trended higher
with increasing prune dose (p = 0.05), although upon post-hoc
testing, only the 50 g prune group had increased 3-hydroxyhip-
puric acid excretion compared to control (p = 0.043).

3.6. Associations between microbiota and phenolics

We conducted canonical correspondence analysis (CCA) to
determine relationships between the whole microbial commu-
nity (log counts of bacterial genera) and urinary phenolics
post-prune intervention. Axis 1 explains 6% of the variation in
the data (Fig. 5). The vectors running parallel to this axis indi-
cate the microbiome differences among the prune treatments
were primarily driven by hippuric acid and 4-hydroxybenzoic
acid. Vectors along Axis 2, which explains 4% of the variation,
indicate differences among the microbiomes of the prune
groups were driven primarily by total phenolics and 3-hydroxy-
hippuric acid. The overall model was not significant (p =
0.375).

Fig. 2 Among sample (beta) diversity at baseline (A) and week 52 (B) (n = 52 control, 54 50 g prune, 37 100 g prune). Principal coordinate plots of
the beta diversity dissimilarity metric Bray–Curtis. Each dot represents one microbiome, color coded by treatment. The centroids of each treatment
group are represented by diamonds. Ellipses represent spread of the data. Numbers in parentheses indicate the percent of variation explained by
each axis. PERMANOVA and PERMDISP p-values presented. (C) Bray–Curtis dissimilarity values from pairwise comparisons of samples within each
treatment group at baseline and week 52 (sample n = 52 control, 54 50 g prune, 37 100 g prune; number of comparisons = 1326 control, 1431 50 g
prune, 666 100 g prune). Violin plot shows the distribution of dissimilarity values and lines represent the median. Overall significance was detected
(ANOVA p < 2 × 10–16) and letters represent pairwise significant differences (Tukey HSD p < 0.1).
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Because associations between phenolics and the total gut
microbiome were not statistically significant, we then con-
ducted linear correlations between phenolics and individual
taxa. For this analysis, all samples (compliant and non-compli-
ant, baseline and week 52, n = 310) were included to increase
power. Four taxa were significantly correlated or trended
towards correlations with phenolic metabolites after
Bonferroni correction (Fig. S3‡). All correlations explained a
limited proportion of the variation in the data (Spearman’s r2

< 0.12). A bacterium in the family Lachnospiraceae correlated
positively with total phenolics (p = 0.05, r2 = 0.06). A bacterium
in the genus Blautia correlated negatively with total phenolics
(p = 0.03, r2 = 0.06). Two taxa correlated negatively with
3-hydroxyhippuric acid: a bacterium in the family
Oscillospiraceae (p = 0.02, r2 = 0.11), and a bacterium in the
genus Hydrogenanaerobacterium (p = 0.08, r2 = 0.10).

Because phenolic metabolism is likely conducted by mul-
tiple genera, we used multiple linear regression to determine
whether multiple taxa may explain observed outcomes in urinary
phenolic metabolites, and which genera were most explanatory
(Table 2). All samples (compliant and non-compliant, baseline
and week 52, n = 310) were included to increase power. All eight
taxa identified for the multiple linear regression models were sig-
nificant for total urinary phenolics and 4-hydroxybenzoic acid.
Seven and five taxa were significant for 3-hydroxyhippuric acid
and hippuric acid, respectively. Eight taxa significantly (p = 1 ×

10–4) explained 10% of the variation in total urinary phenolics,
including Lactobacillus (coefficient: 18.06, p = 0.009) and two
Lachnospiraceae genera (p < 0.03). Eleven percent of the variation
in hippuric acid was significantly (p = 0.001) explained by eight
taxa, including the [Eubacterium] ruminantium group (coefficient:
−130.51, p = 0.002). Thirty-two percent of the variation in
3-hydroxyhippuric acid was significantly (p = 2 × 10–10) explained
by eight taxa, with the most significantly associated genera being
Megamonas (coefficient: 28.20, p = 6 × 10–6). Twenty-eight percent
of the variation in 4-hydroxybenzoic acid was explained by a
model incorporating eight taxa (p = 2 × 10–6), including some
genera of the families Eggerthellaceae, Lachnospiraceae, and
Ruminococcaceae.

3.7. Associations between microbiota and inflammatory
markers

Linear correlations between host inflammatory markers and
microbial taxa were conducted. As with the phenolic analysis, this
analysis included both compliant and noncompliant samples,
pre- and post-intervention, in order to increase power (n = 310).
One taxon was significantly correlated after Bonferroni correction.
Lachnospiraceae UCG-001 was negatively correlated with plasma
concentrations of IL-1β (p = 0.002, r = −0.29; Fig. S4A‡) and IL-6
(p = 0.09, r = −0.25; Fig. S4B‡). We did not use CCA to determine
associations with inflammatory markers due to the large number
of missing samples.

Fig. 3 The effect of prunes on the differential abundance of gut microbiome taxa. (A) Differentially abundant taxa identified by Linear Discriminate
Analysis Effect Size (LEfSe) analysis of bacterial communities from prune treatments. Only lowest taxonomic assignments of taxa with an LDA > 3 are
presented. Bars are colored by treatment group in which that taxon is most abundant. (B–E) Boxplots representing the medians and upper and lower
quartile values of relative abundances of most differentially abundant taxa identified by LEfSe: (B) Lachnospiraceae, (C) Blautia, (D) Oscillospirales, (E)
Anaerostipes. Dots represent outliers. Data presented are from compliant subjects at week 52 (n = 52 control, 54 50 g prune, 37 100 g prune).
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4. Discussion

Postmenopausal women consuming prunes for 12 months
had statistically different gut microbiomes compared to con-
trols. In particular, subjects consuming 50 g and 100 g prune
per day over 12 months had different beta diversity compared
to controls post-intervention, and these differences were
driven by changing abundances of microbial taxa rather than
selection for a substantially different set of taxa. This is not
unexpected, because the macro- and micronutrients in prunes
are not totally unique to prunes. At baseline, subjects were
consuming sugars, fibers, and phenolics in other foods, and
already possessed taxa that could utilize these compounds.
However, prune consumption altered the relative amounts and
composition of fibers and phenolics delivered to the gut, like-
wise altering the microbial community. This changing relative
abundance (as opposed to selection for a new set of taxa) indi-
cates that many postmenopausal women already harbor gut
bacteria that can provide beneficial effects upon consuming
prunes and can be enriched with prune consumption. Further,
we noted that within-group dissimilarity decreased for the
prune groups. This may indicate that prunes exert a selection

pressure on the microbiome,38,39 enriching specific taxa that
metabolize prunes. These differences may be due in part to
differential dropout rates among the treatment groups due to
prune intolerance (Fig. S1‡), which may be influenced by
microbiome makeup.40 Prune intolerant microbiomes would
not have dropped out of the control group. However, we
observed differences in the 50 g prune group, in which only
four out of 79 allocated participants dropped out due to prune
intolerance. In addition, differences at the endpoint could be
due to the prune supplement’s effect on diet, rather than
prunes themselves. All treatment groups consumed similar
amounts of total fiber (Fig. 1) at week 52, indicating that
prunes may have displaced other sources of fiber. While there
were differences in the microbiomes among treatment groups
at baseline, these differences were due to differences in pres-
ence of some taxa rather than relative abundances (as noted
post-intervention). The differences at baseline are attributable
to random chance, caused by differences in baseline diets,
environments, and/or host factors.37,41

This study demonstrates that the addition of prunes to
diets for 12 months has similar outcomes to other fruit inter-
vention and microbiome studies. Other studies in fruits have

Fig. 4 Boxplots represent the medians and upper and lower quartile values of excreted urinary phenolics at week 52: (A) 3-hydroxyhippuric acid,
(B) 4-hydroxybenzoic acid, (C) hippuric acid, and (D) total phenolics, Dots represent outliers. Overall comparison Kruskal–Wallis p-values are pre-
sented and if significant pairwise comparisons (pairwise Wilcoxon p < 0.05) were found, they are marked by different letters above boxes.
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reported that phenolics and fibers alter the gut microbiome
species composition, and select for commensal taxa (reviewed
in ref. 42). In particular, phenolics enrich for Bacteroides and
Lactobacillales, as noted here, and fiber increases
Lactobacillales and decreases clostridia, also noted here.43

However, these studies are usually short-term, acute interven-
tions. In long-term studies, the gut microbiome may return to
a baseline-like composition after three months, such as in a
study of a low-carbohydrate and low-fat dietary interventions
in humans.44 In contrast, we observed sustained differences in
the microbiome after 12 consecutive months of prune con-
sumption. In addition, we identified significant correlations
between select phenolic metabolites and a few taxa, but these
associations were weak. This may be due to confounding vari-
ables, which are especially plentiful in human microbiome
studies. However, upon testing multiple taxa using multiple
linear regression, we were able to greatly improve the percent
of variation in phenolic metabolites explained, indicating that
phenolic metabolism is cooperative and influenced by mul-
tiple bacterial organisms. Associations may be due to phenolic
metabolism by these organisms, as is likely the case for known
phenol metabolizers such as Eggerthella,45 or inhibition of
their growth by phenolics. In addition, we were able to deter-
mine via CCA that prune treatment, total phenolics, and hip-
puric acid were associated with the gut fecal microbiome
makeup. This finding is supported by the beta diversity differ-

ences between the prune groups, and the correlations between
microbial taxa and phenolic metabolites. These results indi-
cate that prune consumption and associated phenolics altered
the microbial community, supporting other studies.20

The two prune doses of 50 g and 100 g exerted differential
effects on the gut microbiome. Beta diversity analysis using
Bray Curtis indicated there were differences in the overall com-
munity abundances between the 50 g and 100 g prune doses.
There were different patterns of taxa enrichment and suppres-
sion at each dose, i.e., some taxa were most abundant at 50 g,
and lower in both control and 100 g, indicating that prune
dose is a factor contributing to microbiome structure and com-
position. This was further supported by the lower evenness
measure of alpha diversity in subjects consuming 50 g prune
per day compared to the other groups. An important caveat to
this finding is that the 50 g prune group had a slightly higher
BMI, and that alpha diversity differed among the groups at
baseline and remained different at 12 months. This has impor-
tant implications for the dosing of dietary supplements and
may partly explain why beneficial effects seen at one prune
dose are not always seen at higher prune doses. Similarly, in
an ovariectomized rat model of postmenopause, different
doses of blueberry phenolics enriched different sets of taxa,
and caused altered metabolism of dietary compounds.46 The
observed differences in taxa at each dose may be driven by
inhibition of metabolism or cell division at high phenolic

Fig. 5 Canonical Correspondence Analysis (CCA) of log transformed bacterial genera counts, prune treatment group and phenolic metabolite con-
centrations from compliant participants at week 52 (n = 52 control, 54 50 g prune, 37 100 g prune). Each dot represents a microbiome and the cen-
troids for each treatment group are represented by diamonds. Each arrow shows direction and strength of associations with host variables. Samples
clustered with arrows are associated with that host variable. The model was not significant (p = 0.375).
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dosages,47 but could also be due to altered food composition,
altered nutrient availability, changes in other taxa altering
community dynamics and competition pressure, altered inter-
actions with the host GI tract and immune system, or prune-

altered gut transit time.2 Some combination of these effects
are likely responsible for the distinct responses seen at the two
different prune doses.

We detected many differentially abundant taxa between the
prune groups that support other findings. A previous study has
shown that prune juice decreased culturable Clostridium perfin-
gens,19 and we also observed that Clostridium sensu stricto 1, of
which C. perfingens is a member, decreased in relative abun-
dance in the prune groups. In fact, clostridia are generally
decreased by fiber supplements.43 However, we did not
observe other differences noted in the prune juice study, such
as decreased E. coli and increased Lactobacillus and
Bifidobacterium among the prune groups, probably due to
differences in the methods used to quantify bacteria (cultiva-
tion vs. 16S rRNA gene sequencing), as well as different
subject demographics and their use of prune juice instead of
whole prunes, which differ in fiber content.19 Fiber can modu-
late the gut microbiome through selection for fiber-fermenting
organisms, and fiber can be fermented by the gut microbiome
to SCFAs.15,48 A four-week study of whole prune consumption
observed no differences between intervention groups (control,
80 g, 120 g prune) post-intervention in select fecal bacteria
quantified by qPCR. We also did not observe significant differ-
ences for any of the taxa tested by those authors.2 By using 16S
rRNA gene amplicon sequencing we were able to get a more
complete picture of bacterial taxa impacted by a long term
prune intervention.

Lachnospiraceae is likely involved in part of the health
effects of prunes. Prunes increased the relative abundance of
Lachnospiraceae and genera within that family, such as
Blautia and Anaerostipes. Anaerostipes has been previously
reported to increase with phenolic-rich fruits, including after a
12-week chokeberry extract intervention in healthy adults.49

Organisms in the family Lachnospiraceae are fiber fermenters
and produce SCFAs, which have anti-inflammatory properties
that may benefit the host.50 Lachnospiraceae and Blautia corre-
lated with urinary phenolic metabolites, and may be involved
in their metabolism. Lachnospiraceae members have pre-
viously been shown to metabolize flavonoids, a class of pheno-
lic compounds.51 In addition, Lachnospiraceae UCG-001
(although not differentially abundant among the prune
groups) was negatively correlated with IL-1β and IL-6, indicat-
ing a role for this family in immune signaling in the context of
prune consumption. Previous studies have also demonstrated
that Lachnospiraceae are potent immunomodulators, main-
taining the gut epithelial barrier and likely exerting anti-
inflammatory effects against IBD.51 However, the role of
Lachnospiraceae in human health is complex and the family
has also been positively correlated with metabolic diseases,
including diabetes and obesity.51 In summary, the
Lachnospiraceae is enriched by prunes may be involved in pro-
ducing anti-inflammatory SCFAs and phenolic metabolites
from prunes, and likely plays a role in immune regulation,
mediating the health effects of prunes.

Limitations of this study include the presence of confound-
ing variables, low power, and lack of funds to characterize

Table 2 Multiple linear regression of excreted urinary phenolics as a
function of the log counts of the eight most explanatory genera for each
metabolite

Total urinary phenolics
Multiple R-squared: 10%
Adjusted R-squared: 8%
Overall model P-value: 1 × 10–4

Estimate Std. error P-Value
Intercept 237.96 46.82 7 × 10–7

Atopobium −99.85 31.99 0.002
[Clostridium] innocuum group −80.96 33.85 0.017
Lactobacillus −13.15 5.65 0.021
Streptococcus 18.06 6.85 0.009
Clostridia vadin BB60 group 14.30 6.11 0.020
Agathobacter −11.86 5.28 0.025
[Eubacterium xylanophilum] group −13.39 5.36 0.013

Hippuric acid
Multiple R-squared: 11%
Adjusted R-squared: 8%
Overall model P-value: 0.001

Estimate Std. error P-Value
Intercept 412.83 368.16 0.263
Eggerthellaceae, unclassified −181.74 96.44 0.061
Eggerthella −110.19 46.74 0.019
[Eubacterium] ruminantium group −130.51 41.79 0.002
Monoglobus 114.24 58.49 0.052
Oscillospiraceae, unclassified −152.84 62.96 0.016
Peptococcaceae uncultured 161.50 79.46 0.043
Family XIII AD3011 group 98.65 56.41 0.082

3-Hydroxyhippuric acid
Multiple R-squared: 32%
Adjusted R-squared: 29%
Overall model P-value: <2 × 10–10

Estimate Std. error P-Value
Intercept 69.68 22.20 0.002
Paraprevotella 5.43 2.06 0.009
Erysipelatoclostridium 24.79 7.18 0.001
Lachnospiraceae UCG 004 5.06 3.12 0.108
[Eubacterium] eligens group −6.18 2.13 0.004
Oscillospira 8.25 3.19 0.010
Ruminococcaceae incertae sedis −9.46 3.84 0.015
[Clostridium] methylpentosum group −6.00 3.43 0.082
Megamonas 28.20 6.01 6 × 10–6

4-Hydroxybenzoic acid
Multiple R-squared: 28%
Adjusted R-squared: 23%
Overall model P-value: <2 × 10–6

Estimate Std. error P-Value
Intercept 13.47 3.46 2 × 10–4

Gordonibacter 1.45 0.57 0.012
Erysipelatoclostridium 1.79 0.88 0.044
Gemella −1.79 0.85 0.036
[Eubacterium] eligens group −0.73 0.28 0.010
Ruminococcaceae incertae sedis −1.31 0.62 0.038
Pygmaiobacter −3.22 1.27 0.012
Megamonas 2.71 0.86 0.002
Ralstonia −1.75 0.75 0.020

Estimate represents either the partial slope (β) or the value of the
intercept. Std. Error is the standard error of the estimate. Data
represents four separate models for each phenolic metabolite. These
models used all 310 microbiome samples.
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microbiome function. The gut microbiome is influenced by
many variables, including diet, exercise, age,37 BMI,52 host
genetics,41,53 and more. Associations between prunes, phenolic
metabolism, inflammatory markers, and the gut microbiome
may be overshadowed by these confounding variables. Also,
the phenolic quantification method utilized in this study was
limited to 21 metabolites, chosen based on preliminary assess-
ment of plum metabolism in rodents.54 While these metab-
olites are representative of human metabolites and hippuric
acid is a well-known marker of phenolic metabolism, it is
likely that a broader targeted method may be able to detect
additional metabolites of interest. In order to minimize the
invasiveness of study procedures, we measured circulating
inflammatory markers, some of which may be influenced by
factors such as infection, as opposed to intestinal-specific
inflammatory measures, such as gut permeability. Future
research may be benefitted by incorporating intestinal
measures of inflammation in order to develop a more com-
plete understanding of the microbiome-mediated effects of
prunes on inflammation. Because of the high dropout rate,
confounding variables, and incredible variability of micro-
biomes, this study may be underpowered to identify more
relationships between the gut microbiome, phenolic metab-
olism, and inflammatory markers. Power analyses have
revealed that microbiome-focused intervention studies in
human subjects may require several hundred subjects in each
treatment group.36 In fact, post hoc power analyses on this
dataset (data not shown) indicate we only achieved 50% power
and would need to double the number of subjects to achieve
80% power. Strict exclusion criteria for human microbiome
studies to reduce uncontrolled variation may be worth consid-
ering, although this approach would severely limit generaliz-
ation of results. In addition, because of the method used to
characterize the gut microbiome, we were not able to deter-
mine functional differences between microbiomes, as might
be possible using approaches such as RNAseq, metabolomics,
proteomics, or enzyme assays. Functional and mechanistic
studies are required to further define relationships between
prunes, the gut microbiome, phenolic metabolites, and
inflammatory markers.

5. Conclusions

Taken together, these results indicate that 12-months of daily
prune consumption appears to exert beneficial impacts on the
gut fecal microbiome of postmenopausal women, such as
enriching bacteria in the family Lachnospiraceae. This is a
group of known SCFA-producers that we found were associated
with immunomodulatory effects and phenolic metabolism.
The beta diversity analyses indicate the beneficial effects
appear to result from a change in abundances of certain bac-
teria present in the microbiome. This makes the benefits
associated with prune consumption accessible to many indi-
viduals, because the changes do not rely on acquiring a rare
set of taxa. It is likely that there are many microbes that metab-

olize phenolics to beneficial metabolites, and prunes may help
shift the microbiome towards a community that does so. This
study indicates that long term prune consumption results in a
sustained change in the gut fecal microbiome and phenolic
metabolism associated with health benefits.
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