Phellinus Wood Rot Management Update

Laurel Hoffman
University of California, Davis
Rizzo Lab

Wood decay fungi in Prune:

Phellinus pomaceus

(formerly *P. tuberculosus*)

Symptoms:

- Broken limbs, loss of major scaffolds
- Decayed wood
- General tree decline

Signs:

Presence of fruiting bodies ("conks")

Wood decay fungi in Prune: *Phellinus pomaceus*

- Appears to be associated with pruning wounds
- No known chemical controls

Wood decay fungi

- Traditionally considered nonaggressive diseases except in times of plant stress
- Research has focused on taxonomy
- Epidemiology and biology not wellstudied

Understanding Transmission and Control of *Phellinus pomaceus* in Prune

2024 Objectives:

- 1. Serve as a resource for growers, farm advisors, and PCAs through identification of wood-decay, orchard evaluations, and outreach.
- 2. Conduct broad disease severity surveys to identify management outcomes
- 3. Conduct *P. pomaceus* spore surveys
- 4. Evaluate the effects of current biocontrol products
- 5. Determine infection entry points via destructive tree sampling
- 6. Evaluate differences in susceptibility to decay

Objective 1:

Serve as a resource for growers, farm advisors, and PCAs; Provide identification of wood-decay, orchard evaluations, and outreach.

2023 Update:

- Collaborating on UC IPM Pest Management Guidelines for *Phellinus pomaceus: d*iseases subchapter for Prune
- Handout developed for growers

Objective 2: Broad disease severity surveys

Survey for disease severity

- Severity ratings: no. of conks, broken scaffolds, canopy uniformity
- Co-occurring infections
- Pruning strategies

Compare with:

- PUR (Pesticide Use Reports) data
 - Dormant Oil applications
- Irrigation strategies
- Environmental data:
 - HOBO sensors
 - Historical weather

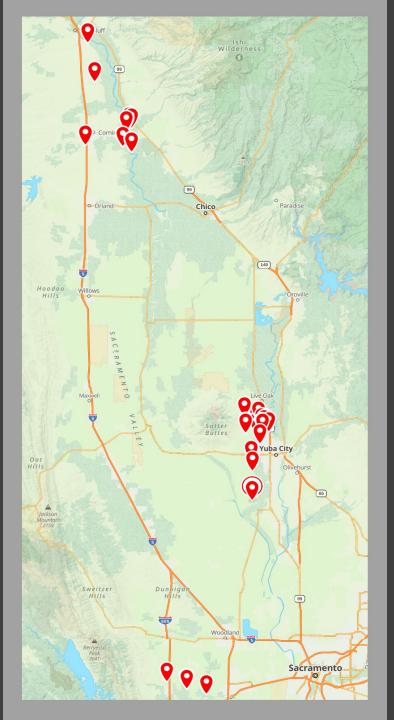
Objective 2:

Broad disease severity surveys

2023 update:

18 Orchards surveyed, 3,200 trees

PUR data TBD


Soil and weather data TBD

High co-incidence of canker diseases in orchards that contain *Phellinus*

$$(R^2 = 0.19, p=0.06)$$

Pruning style is possible predictor of *Phellinus* presence

 $(R^2 = 0.27, p = 0.09)$

Objective 2:

Broad disease severity surveys

2023 update:

18 Orchards surveyed, 3,200 trees

PUR data TBD

Soil and weather data TBD

High co-incidence of canker diseases in orchards that contain *Phellinus*

 $(R^2 = 0.19, p=0.06)$

Pruning style is possible predictor of *Phellinus* presence

 $(R^2 = 0.27, p = 0.09)$

(Not enough data, TBD...)

Phellinus seen in other prune growing regions

- California
- France
- Argentina
- Chile?

Objective 3: Tracking the spores of *P. pomaceus*

Goal: establish improved timing of pruning to minimize potential for infection

Many factors contribute to spore release patterns:

- Circadian
- Seasonal
- Lifespan (size dependency)
- Post-rain revival
- Environmental
 - Humidity, temperature, light
 - Landscape features
 - Seasonality

Objective 3: Tracking the spores of *P. pomaceus*

- Production of new fungal material following rain events
- Potential peaks in December,
 February

Objective 3: Tracking the spores of *P. pomaceus*

- 6 orchards, 14 sampling stations
- Every 2 weeks for 1 year
- Weather station in each

Objective 4: Evaluation of Biocontrols

Trichoderma spray applications

Previous work:

- Wood blocks in lab
- Pruning wounds at Wolfskill

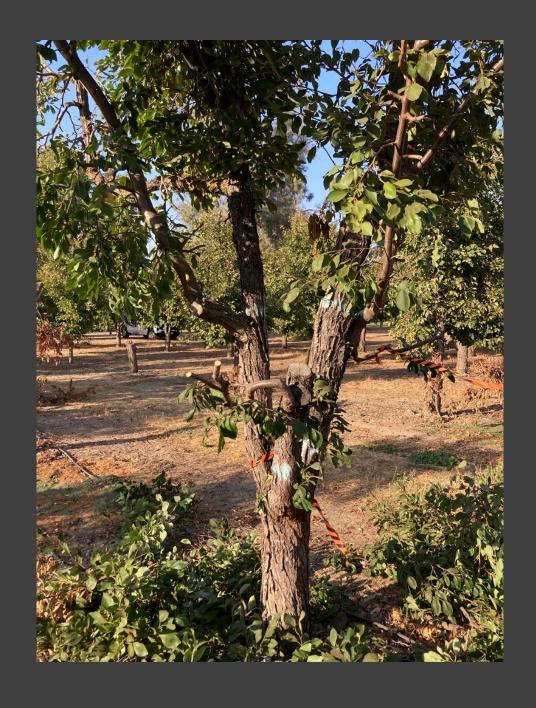
Identified 2 top products:

- BioWorks "BW161"
- Belchim Crop Protection "Vintec"

Objective 4: Evaluation of Biocontrols: Ongoing field trials

1. Pruning Wound Protection Trial

- Initiated in 2019
- Annual applications on 5th leaf trees
 - Spray whole trees with products after pruning
 - Monitor whole orchards for signs of infection
- Will continue for 2024

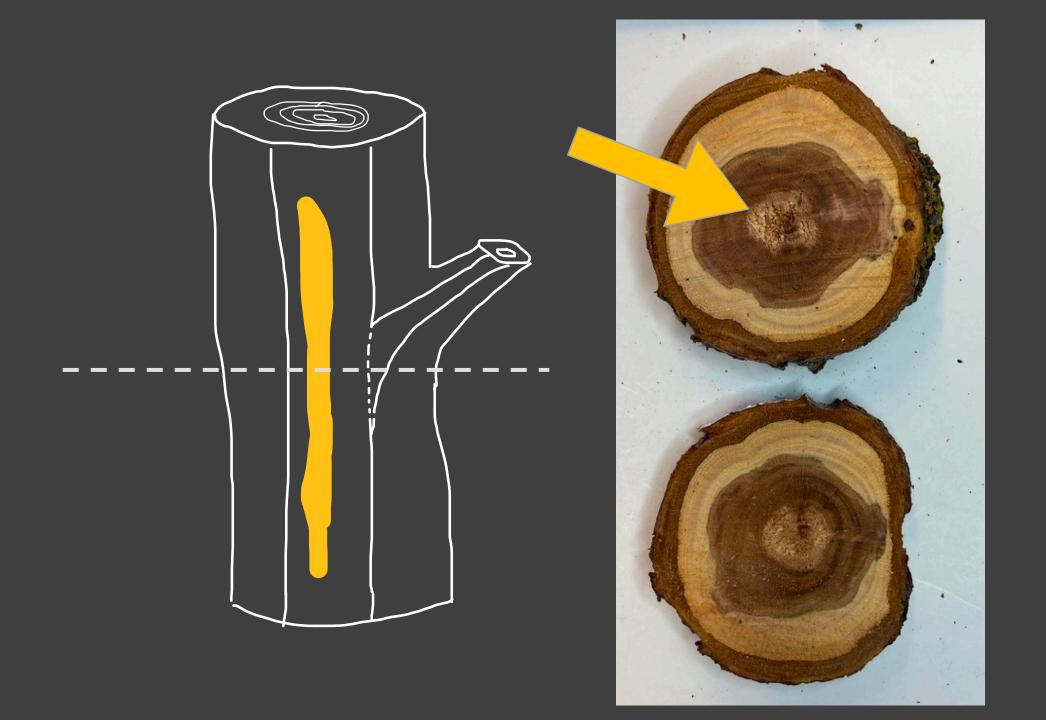

Objective 4: Evaluation of Biocontrols: Ongoing field trials

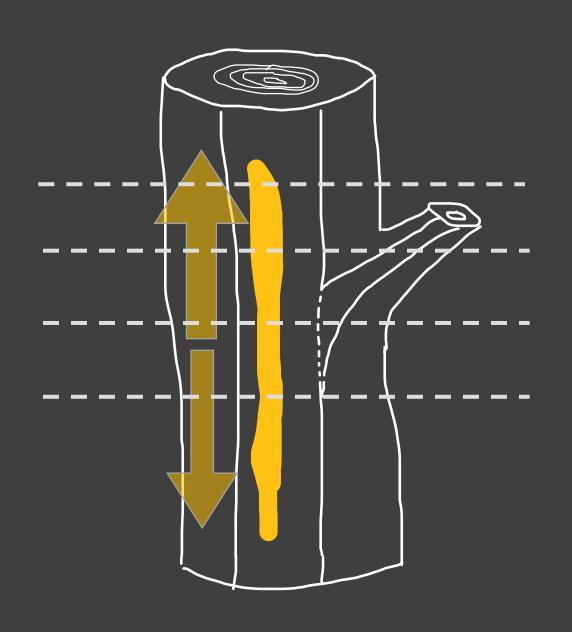
2. Inoculum Reduction Trial

- Initiated in Fall 2022
- Spray applications of *Trichoderma* products on conks
- Observed changes in fruiting body

In Progress

Objective 5: Determine infection entry points via destructive tree sampling

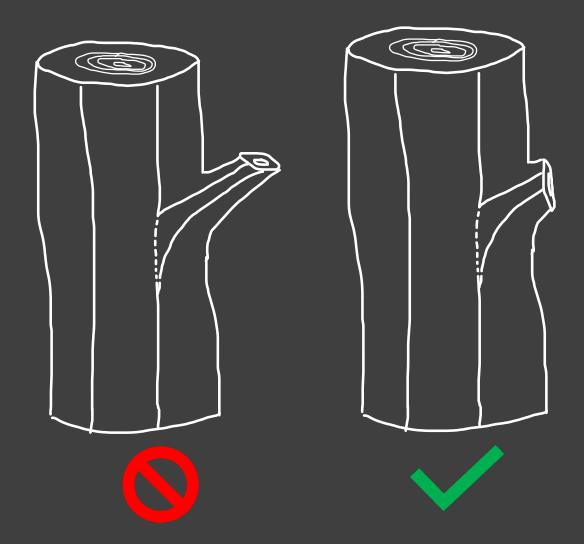

31-yr-old orchard removed autumn 2023


15 trees, 50 limbs destructively sampled

Objective 5: Determine infection entry points via destructive tree sampling

Determining infection entry points via destructive tree sampling

Branch with confirmed	
Phellinus infection	Origin
14	Pruning stub
4	Likely old pruning wound
2	Unknown wound
8	Unclear origin
total = 28	64% from pruning wounds
	90% known origins = pruning wounds



methods

"Pruning stubs"

Training video for pruning crews?

- 2 minute youtube link
- Available in multiple languages
- Production help from CA Association of Resource Conservation Districts

Destructive tree sampling

Graft union dissection:

Cross section 3-5 inches above and below graft unions

Destructive tree sampling

Graft union dissection:

Cross section 3-5 inches above and below graft unions

Scion Wood

Rootstock Wood

Destructive tree sampling

tree #	age	root sq in	scion sq in
1	young	0	0
2	med	5.1	3.2
3	old	0.5	0.4
4	old	4	2.5
5	old	7	6
6	med	5	12.6
7	old	24.1	14.3
8	old	27	23
9	old	13.3	12.1
10	young	0.5	0
11	old	18.8	21.1
12	old	2	6
13	old	28.4	29
		9.74%	

Objective 6: Evaluate differences in susceptibility to decay between varieties

Inoculate dried samples of wood blocks from:

- Prune Breeding program
- Peach
- Cherry
- Almond

Understanding Transmission and Control of *Phellinus pomaceus* in Prune

2024 Objectives:

- 1. Serve as a resource for growers, farm advisors, and PCAs through identification of wood-decay, orchard evaluations, and outreach.
- 2. Conduct broad disease severity surveys to identify management outcomes
- 3. Conduct *P. pomaceus* spore surveys
- 4. Evaluate the effects of current biocontrol products
- 5. Determine infection entry points via destructive tree sampling
- 6. Evaluate differences in susceptibility to decay

University of California:

David R. Rizzo, PhD Themis J. Michailides, PhD

UCANR:

Jaime Ott, PhD Franz Niederholzer, PhD

Sunsweet:

Mark Giles
Joseph Ackley
Mike Mitchell
Jaime DeLaCerda

Growers:

Joe Turkovich Curt Martin Gurbinder Atwal John Taylor New Clairvaux Vineyard Deseret Farms

Growers of Sutter and Tehama Counties

This project was funded by the California Prune Board and UC Davis Internal Fellowships

Hoffman@ucdavis.edu