Reduction of Energy Consumption During Prune Drying: Modeling, Super Absorbent Polymers, and Ultrasound Techniques

Prof. Nitin Nitin Dr. Fidele Abedi

Cost Structure for Prune Production in California

Plotted using data from Niederholzer, F., Milliron, L., Fichtner, E., Murdock, J., & Goodrich, B. (2022). Sample costs to establish a prune orchard and produce prunes.

Trends in Natural Gas Prices in California: A Twenty five-Year Review

California Natural Gas Industrial Price

Dollars per Thousand Cubic Feet

eia

Data source: U.S. Energy Information Administration

Key Determinants of Energy Consumption During the Drying of Prunes

• Long effective drying time

• High drying temperature

$$50 - 70^{\circ}\text{C}$$

$$24 - 36 \text{ hours}$$

Approach for Reducing Energy Consumption During Convective Drying

RH : Relative humidity of the drying air

- Maintaining the lowest possible **RH** in the dryer during the drying process
- Keeping surface water activity a_w as high as possible throughout drying

Reduction of effective drying time Reduction in energy consumption

- 1. Identify the bottleneck for energy consumption during prune drying through mathematical modeling and on-site experimentation.
- 2. Evaluate experimentally the effect of super absorbent polymers on reducing ambient air relative humidity and effective drying time.
- 3. Evaluate the effect of Ultrasounds pretreatment followed by convective drying on drying kinetics and energy consumption.
- 4. Conduct a techno-economic analysis (TEA) to evaluate efficiency and costs of innovations.

Research Methodology

Preliminary Data	Proposed Research								
Single prune drying model	Computational Fluid Dynamics	Lab/Pilot-scale experiments	Full-scale models						
	(CFD) modeling		Include the effect of						
	In-field measurements	RH↓	super absorbent polymers into the						
$\frac{D^{s}(\varepsilon^{w}\rho^{w})}{Dt} + j^{-1/3}\nabla_{L} \cdot (\varepsilon^{w}\rho^{w}v_{L}^{w,s}) - \left(\varepsilon^{w}\rho^{w}\frac{\varepsilon^{-s}}{\varepsilon^{s}}\right) = 0$	Tunnel Dryer	Super absorbent polymers	model						
	Heater	Obj 2. Effect on drying time and energy consumption	Obj4. Conduct a TEA						
	full-scale dryer into the drying model Identify zones where humidity builds up	Ultrasounds pretreatment Obj 3. Effect on energy drying	Include the effect of the US pretreatment into the model						
	Obj 1. Bottleneck for energy consumption	time and energy consumption	UCDAVIS UNIVERSITY OF CALIFORNIA						

Objective 1: Identify the bottleneck for energy consumption during prune drying through mathematical modeling and on-site experimentation

Activities

- Characterization of prunes before and after drying : Laboratory activity
- Lab-scale drying measurements
- In-field measurements: Tunnel dryer measurement, air flow velocity, relative humidity, temperature, drying duration and energy consumption.
- Modeling: Integrating Computational Fluid Dynamics (CFD) to simulate air flow inside the dryer with the heat and mass transfer processes occurring within prunes.
- Computer simulation: Evaluate various scenarios such as intermittency of the heater and changes in air humidity levels.

Objective 1: Identify the bottleneck for energy consumption during prune drying through mathematical modeling and on-site experimentation

Outcome

- A model capable of predicting the spatiotemporal distribution of moisture content in prunes, the characteristics of air inside the dryer, and the overall energy consumption.
- Comprehensive mapping of regions within the dryer where humidity tends to accumulate.

Impact

- Enhanced energy efficiency of the drying process using current tunnel dryers.
- Identification of zones within dryers for targeted interventions aimed at enhancing energy efficiency and reducing drying time.

Objective 2: Evaluate experimentally the effect of super absorbent polymers (SAP) on reducing ambient air relative humidity and effective drying time

Activities

- Material selection (SAP): Crosslinked Polyacrylamide, Crosslinked Polyvinyl Alcohol, Silica gel, Crosslinked sodium polyacrylate, Polyvinylpyrrolidone
- Setup construction: Design and assembly of experimental apparatus for SAP testing.
- Testing SAP moisture absorption capacity
- Testing SAP effectiveness: controlled drying with prunes, both with and without SAPs to establish a baseline for comparison.
- SAP regeneration testing: Evaluating the ability of SAP to be regenerated for repeated use.
- SAP longevity testing: Assessing the long-term effectiveness of SAPs over multiple drying cycles.

Objective 2: Evaluate experimentally the effect of super absorbent polymers (SAP) on reducing ambient air relative humidity and effective drying time

Outcome

- Optimized SAP material selection: Identification of the SAP material with the highest moisture absorption efficacy for prune drying applications.
- Regeneration protocol for SAP: Assessment of the potential for SAP regeneration (cost efficiency).
- Durability data for SAP: Analysis of the long-term usability of SAP.

Impact

- Increased drying efficiency with the optimal use of SAP, thus saving energy and reducing costs.
- Reduced environmental footprint of the prune drying process.

Preliminary Data: Single Prune Drying Model

$$\frac{D^{s}(\varepsilon^{w}\rho^{w})}{Dt} + j^{-1/3}\nabla_{L} \cdot (\varepsilon^{w}\rho^{w}\nu_{L}^{w,s}) - \left(\varepsilon^{w}\rho^{w}\frac{\varepsilon^{s}}{\varepsilon^{s}}\right) = 0$$

Mass balance

$$\sum_{\alpha=s,w} \varepsilon^{\alpha} \rho^{\alpha} C_{p}^{\alpha} \left(\frac{\partial T}{\partial t} + v_{L}^{\alpha} . j^{-1/3} \nabla_{L} T \right) - j^{-1/3} \nabla_{L} . j^{-1/3} \left(\sum_{\alpha=s,w} (\varepsilon^{\alpha} k^{\alpha}) \nabla_{L} T \right) = 0$$

Momentum balance

$$\sigma(t) = \sum_{m=0}^{p} \int_{0}^{t} G_{m} \exp\left(-\frac{t-\varphi}{\lambda_{m}'}\right) \frac{\partial E_{MM}}{\partial \varphi} d\varphi$$

 $\nu_L^{w,s} = -\varepsilon^w \left(D^w j^{-1/3} \nabla_L \varepsilon^w + B_c j^{-1/3} \nabla_L \sigma \right)$

Stress equation

Main Parameters Predicted by the Single Prune Drying Model

- Moisture content
- Temperature
- Energy consumption
- Plum deformation
- Stress
- Strain (deformation)

Single Prune Drying Model Validation: Comparison of Model Prediction with Experimental Data at 50C

Single Prune Drying Model Validation: Comparison of Model Prediction with Experimental Data at 60C

Expected Outcome and Benefits of the Research

- A comprehensive mathematical model capable of predicting the moisture content within the prune, air characteristics inside the dryer, and overall energy consumption during the drying process.
- Identification of the optimal combination of ultrasound pretreatment, superabsorbent polymer selection and placement, and a drying strategy (non-stationary air conditions) to minimize energy consumption.
- Utilization of the drying model for testing numerous drying scenarios via computer simulation, offering cost-effectiveness and minimal operational interference.

Timeline

Activities	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan
Obj. 1: Identify the bottleneck for energy consumption during prune drying through mathematical modeling and on-site experimentation												
Prunes characterization												
Lab-scale drying measurements												
In-field measurements												
CFD Modeling												
Computer simulation												
Obj. 2: Evaluate experimentally the effect of super absorbent polymers on reducing ambient air relative humidity and effective drying time												
Material selection (SAP):												
Setup construction												
SAP moisture absorption capacity												
Testing SAP effectiveness												
SAP regeneration testing												
SAP longevity testing												
Obj. 3: Ultrasounds pretreatment												
Obj. 4 : Techno-economic analysis												

- \$40,000 for 12 months
 - \$25,000 : Partial support for postdoctoral scholar
 - \$10,000 : Drying chamber for conducting controlled drying experiments
 - \$5,000 : Materials and supplies for measuring air flow rate, relative humidity, and temperature

